
The Replay Protocol for DerbyNet
The replay kiosk provides video replay capability for DerbyNet. It communicates with the DerbyNet
web server using the communication protocol described in this document.

Messages Sent To The Server
The replay kiosk polls the server by sending HTTP POST requests to server, normally several times per
second. If the server doesn’t get a replay message for two seconds, it will report to the user that the
replay connection has been lost.

The body of the replay-to-server POST request is in application/x-www-form-urlencoded format,
and comprises three parameters:

• action: This always has the value replay-message to identify the message as part of the
replay protocol.

• status: This has an integer value summarizing the status of the replay application:

◦ 0: ready/idle
◦ 1: recording
◦ 2: playing back
◦ -1: connecting
◦ -2: No video source
◦ -3: No audio source
◦ -4: Recording error

• finished-replay: This has value 1 for the very first request after replay finishes playing back
a video; otherwise 0.

Responses From The Server
If the server recognizes a replay message, it responds with an HTTP response whose body is a simple
XML document.

The response’s XML document will include zero or more <replay-message> elements. Each of these
elements has a text body which is a command to the replay application. The possible replay commands
are:

•"HELLO" is the server's response to a first connection, confirming that a connection has been
successfully established.

• Example: <replay-message>HELLO</replay-message>

•"TEST skipback showings rate" runs the replay test or demo clip. skipback tells how many
milliseconds from the end of the clip should be shown. This is repeated showings times, and
playback is at rate percent of normal speed (e.g., 100 is normal speed playback).

• Example: <replay-message>TEST 3500 2 75</replay-message>

https://developer.mozilla.org/en-US/docs/Web/HTTP/Methods/POST

•"START video_name_root" starts a recording video (video_name_root is a suggested file name
stem).

• Example: <replay-message>START Bears_Round1_Heat02</replay-message>

•"RACE_STARTS skipback showings rate" sets a deadline for playing the next replay. If a
REPLAY message is not received within approximately skipback milliseconds, replay begins as
if it had been.

•"REPLAY skipback showings rate" stops the recording if one is in progress, and plays back the
last skipback milliseconds of that recording. This is repeated showings times, and playback is at
rate percent of normal speed (e.g., 100 is normal speed playback).

• Example: <replay-message>REPLAY 3000 2 100</replay-message>

•"CANCEL" cancels (abandons) the current recording

• Example: <replay-message>CANCEL</replay-message>

It is NOT necessary for the replay application to track cookies sent from the server.

Example Initial Message Exchange
The following is an example initial message exchange between replay and the server.

Replay sends an initial introductory message:

POST /derbynet/action.php HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Connection: keep-alive
Accept: */*
User-Agent: MacDerbyReplay/1 CFNetwork/893.13.1 Darwin/17.3.0 (x86_64)
Accept-Language: en-us
Accept-Encoding: gzip, deflate
Content-Length: 49

action=replay-message&status=-1&finished-replay=0

(Note the single blank line separating the headers from the body.) The response from the server
is:

HTTP/1.1 200 OK
Date: Tue, 09 Jan 2018 23:01:17 GMT
Server: Apache/2.4.28 (Unix) LibreSSL/2.2.7 PHP/7.1.7
X-Powered-By: PHP/7.1.7
Set-Cookie: PHPSESSID=0e39d9b53b7e4a56ee88ed88d780f50f; path=/
Expires: Thu, 19 Nov 1981 08:52:00 GMT
Cache-Control: no-store, no-cache, must-revalidate
Pragma: no-cache
Content-Length: 206
Keep-Alive: timeout=5, max=100
Connection: Keep-Alive
Content-Type: text/xml; charset=utf-8

<?xml version="1.0" encoding="UTF-8"?>

<action-response action="replay-message" status="-1" finished-replay="0">
<replay-message>HELLO</replay-message>
<success/>
</action-response>

Note the single <replay-message> element carrying a “HELLO” message.

	Messages Sent To The Server
	Responses From The Server
	Example Initial Message Exchange

